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Abstract
Alzheimer disease (AD) is a chronic neurological disorder in which the loss of brain cells causes dementia. Early and accu-
rate diagnosis of AD will lead to better treatment of the disease before irreversible brain damage has been occurred. This 
paper proposes the classification of Alzheimer's disease using 3D structural Magnetic Resonance Imaging (sMRI) images 
through 3D convolutional neural networks (CNNs). Most existing methods utilizing 3D subject-level CNNs for Alzheimer's 
disease classification design a single model which relies on a very large training dataset for improved generalization. Herein, 
we address this issue through 3D transfer learning which makes use of knowledge gained from a pre-trained task. We train 
3D versions of five classical 2D image classification architectures—ResNet, ResNeXt, SE-ResNet, SE-ResNeXt, and SE-
Net—by initializing each model with pre-trained weights from their 2D counterparts, and combine their predictions through 
a weighted average method. The weights assigned to each model of the ensemble are optimized to achieve a performance 
better than any single 3D CNN model. With a relatively smaller training dataset, the proposed model obtains 97.27%, 82.33%, 
90.41%, 84.22%, 84.26%, and 77.1% accuracies for the Alzheimer’s disease (AD) versus cognitively normal (CN), early 
mild cognitive impairment (EMCI) versus CN, late mild cognitive impairment (LMCI) versus CN, EMCI versus AD, LMCI 
versus AD, and EMCI versus LMCI classification tasks, outperforming current state-of-the-art methods, and indicating the 
effectiveness of our proposed model.
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Introduction

Alzheimer’s disease (AD) is an irreversible progressive 
neurodegenerative disorder that deteriorates memory cells 
and subsequently hampers other important brain functions. 
There are 50 million people worldwide suffering from 
dementia, and Alzheimer’s disease contributes to 60–70% 
of those cases [1]. Alzheimer's disease has no cure and no 

treatment to stop its progression, yet it is essential to give 
diagnosis as early and accurately as possible. The mild cog-
nitive impairment (MCI) is a transitional state between the 
normal aging and Alzheimer’s disease, and MCI is most 
likely to be converted to AD later [1]. Based on the time 
of conversion to MCI, the MCI category is further divided 
into early MCI (EMCI) and late MCI (LMCI) [2]. Due to 
subtle differences in brain morphology and brain functions 
between subjects with MCI and subjects who are cognitively 
normal (CN), it is quite challenging to distinguish between 
MCI and CN. As such, MCI is often misdiagnosed as the 
symptoms of normal aging, which results in missing the 
timely treatment. Therefore, the accurate diagnosis of MCI 
is essential for the early diagnosis and treatment of AD [3]. 
The different stages of AD are shown in Fig. 1 through some 
sample brain MRI images.

Early diagnosis of AD and MCI can be successful 
in improving intellectual capacity, treating melancholy, 
improving guardian state of mind, and delaying institution-
alization. It will permit individuals to prepare in advance 
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regarding their future care while they actually have the abil-
ity to settle on significant choices. In addition, they and their 
families can receive timely practical information, counsel, 
and backing [3].

MRI is a medical imaging technique which creates 3D 
representation of organs in the body using magnetic fields 
and radio waves. Since MRI scans can provide useful bio-
markers such as patterns of atrophy, they have been widely 
used for AD detection. Latest trends in the current literature 
show that deep learning methods such as convolutional neu-
ral networks (CNNs) are very efficient in classifying subjects 
with Alzheimer’s disease [25–40].

Motivation

2D CNNs have become quite mainstream for AD detec-
tion because they are computationally inexpensive to train 
and can support transfer learning and an increased dataset 
size as multiple 2D slices can be extracted from a single 3D 
scan. However, they are not efficient in encoding the latent 
information of the 3D images due to the absence of kernel 
sharing across the third dimension. It has also been found 
by Wen et al. [25] that data leakage is extremely common 
studies that employ 2D CNNs for AD classification. In stud-
ies [41, 42], train-test split would be done at the slice level 
and not the subject level, i.e., the 2D slices from the same 
subject’s MRI scan would appear in both train and test sets, 
leading to biased results.

3D subject-level CNNs are an excellent substitute to 2D 
CNN, as they can fully encode the spatial dependencies 
between adjacent slices in an efficient manner. They take, 
as input, the whole 3D MRI scan and can sufficiently express 
the connections in the huge interconnected network. Since 
the whole MRI is used at once, classification is performed 
at subject level, avoiding any data leakage. In recent years, 
transfer learning techniques have been introduced to 3D 
CNNs to effectively utilize the resources and improve effi-
ciency [11, 12]. Through transfer learning, we can acquire 
the knowledge that neural networks learned on one task 
and utilize the same for another task. By initializing the 3D 
CNNs with the weights of 2D CNNs that were pre-trained on 
large and general datasets such as ImageNet [7], the feature 

maps learned by the pre-trained model can be utilized for the 
classification of ADs on our dataset.

Another popular strategy that has been known to boost 
the performance of not only 3D CNNs, but also any machine 
learning or deep learning model, is to train an ensemble of 
models and combine their predictions [21–23]. A standalone 
classifier would approach a given problem in only one man-
ner and can suffer from a high generalization error. How-
ever, multiple such classifiers can work together to make 
better predictions and improve generalization. A relatively 
simple way to combine the predictions of all the models is 
an equally weighted average where every single classifier 
has a same weightage in the final prediction. But sometimes 
we might want some exceptional performers to contribute 
more, and some inferior ones to contribute less, and this is 
done using an optimally weighted average. Each model is 
assigned a weight that is proportional to its performance 
on the validation set, allowing better performing models to 
contribute more to the final prediction.

Approach and Outcome

In this study, we examine an optimally weighted average 
ensemble of 3D CNN architectures for six binary classifi-
cation tasks related to AD classification—AD versus CN, 
EMCI versus CN, LMCI versus CN, EMCI versus AD, 
LMCI versus AD, and EMCI versus LMCI—using data from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
project. The 3D CNNs are based on the residual neural net-
works [13] and their variations [14, 15] with their convolu-
tional filters bootstrapped from their 2D variants pre-trained 
on ImageNet. The optimal weights assigned to each classi-
fier of the ensemble such that the weighted average of their 
predictions would result in the highest possible accuracy 
are found through the Sequential Quadratic Programming 
(SQP) algorithm [24].

Main Contributions

The main contributions of this paper are as follows:

1.	 For ADs detection, we propose a weighted aver-
age ensemble of the 3D variants of the ResNet-50, 
ResNeXt-50, SE-ResNet-50, SE-ResNeXt-50, and SE-
Net-154 models.

2.	 We applied 3D transfer learning to the aforementioned 
five models to maximize their efficiency and perfor-
mance.

3.	 By finding the optimal contribution of each model to the 
final prediction, we were able to bring forth an ensemble 
accuracy greater than any single model and an equally 
weighted ensemble.

Fig. 1   The coronal view of brain MRI of subjects belonging to the 
four classes associated with Alzheimer's disease. a Cognitively nor-
mal (CN); b early mild cognitive impairment (EMCI); c late mild 
cognitive impairment (LMCI); d Alzheimer’s disease (AD)
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4.	 The proposed framework learns from a small dataset and 
still demonstrates superior generalized performance.

The rest of this paper is organized as follows. In “Litera-
ture Review” section, we review related literature. Next in 
“Materials and Methods” section, we describe the data selec-
tion, data augmentation techniques, our proposed model, 
and the performance metrics in detail. Then in “Results and 
Discussion” section, we present our experimental results 
and discussion over the obtained results. Finally, we con-
clude the paper in “Conclusions” section and present future 
research directions.

Literature Review

In recent years, numerous studies based on deep learning, 
especially convolutional neural networks, have been pro-
posed to assist in the diagnosis of AD.

A modern and systematic review of state-of-the-art on 
classification of Alzheimer’s disease using CNNs by Wen 
et al. [25] pointed out that a significant number of studies 
reported biased results due to data leakage. The authors then 
performed rigorous assessment of various CNN frameworks 
and observed that the 3D approaches significantly outper-
formed the 2D approaches for AD classification. The highest 
accuracy (88% on the AD vs. CN classification task) was 
obtained by the 3D ROI based approach wherein the left and 
right hippocampus were chosen as ROIs. Moreover, they dis-
played the generalizability of their models by training them 
on the ADNI dataset and evaluating them on the AIBL [4] 
and OASIS [5] datasets.

Classical image classification architectures such as VGG, 
ResNet, and Inception have extensively been adapted to the 
third dimension for AD classification. Korolev et al. [26] 
derived two 3D architectures—VoxCNN and VoxResNet 
from smaller versions of VGG and ResNet, respectively, for 
AD classification. The authors did not use complex preproc-
essing, handcrafted feature generation and complex model 
stacking. While they were able to set a baseline accuracy 
of 80% on the AD versus CN task, they achieved only 52% 
and 56% accuracies on the EMCI versus LMCI and EMCI 
versus CN tasks, respectively. The authors of [30] utilized 
an inception module based 3D convolutional autoencoder for 
the AD classification task. They later transferred the repre-
sentations of the AD versus CN classifier to the pMCI (Pro-
gressive MCI) versus sMCI (Stable MCI) classification task 
and achieved 86.60% and 73.95% on the AD and pMCI clas-
sification tasks, respectively. A 11 layered 3D CNN based 
on the VGG 512 architecture called ADNet was proposed 
by Folego et al. [31]. They used domain adaptation to adapt 
ADNet, trained on the ADNI dataset, to ADNet-DA which 
was used for classification on the CADDementia dataset [6]. 

While they didn’t make use of any prior information about 
AD, they achieved only 52.3% accuracy on the CADDe-
mentia dataset.

One of the current trends in AD classification is to use 
transfer learning which helps to save resources and improve 
efficiency, and it has been used extensively for various 
2D CNN methods. On the OASIS dataset, Hon et al. [40] 
employed the VGG-16 and InceptionV4 architectures that 
were pre-trained on the ImageNet dataset, and repurposed 
them for the AD classification problem. With a training size 
10 times smaller than other state-of-the-art, an accuracy 
of 96.25% was obtained on the AD versus CN task. More 
recently, Bae et al. [28] used a 2D CNN transfer learning 
approach for the AD versus CN task. They extracted 30 2D 
slices from the coronal view of the brain per subject. The 
30 slices were independently fed into an InceptionV4 model 
pre-trained on ImageNet, and the results averaged to clas-
sify a single subject. They obtained MRI scans from the 
ADNI dataset, and a custom dataset from the Seoul National 
University Bundang Hospital (SNUBH), trained their pro-
posed model individually on each dataset, and performed 
within-dataset validation as well as between-dataset valida-
tion. Both between-dataset validation accuracies were above 
80% indicating their high generalizability.

In recent years, transfer learning has been introduced to 
3D CNNs as well. For instance, Hara et al. [11] showed 
that similar to 2D CNNs pre-trained on ImageNet for image 
recognition, simple 3D CNNs pre-trained on the Kinetics 
dataset [8] could achieve remarkable advancements in action 
recognition and related tasks. Prior to them, the authors of 
[12] bootstrapped the filters of an ImageNet pre-trained 
Inception-V1 model on to a “Two-Stream Inflated 3D Con-
vNet” (I3D), trained it on the Kinetics dataset, and finally 
fine-tuned it on the HMDB-51 [9] and UCF-101 [10] action 
recognition datasets, setting benchmark results on them. The 
technique of bootstrapping the filters of a 2D CNN to a 3D 
CNN has been employed for AD classification by Ebrahimi 
et al. [29] who initialized a 3D ResNet-18 with weights of 
a 2D ResNet-18 pre-trained on ImageNet for the AD versus 
CN task, and reported a 28.13% boost in accuracy using 
transfer learning as compared to training from scratch.

Showing contrast to training a single model, the usage of 
an ensemble of CNNs for AD detection has been substan-
tially explored in the past. Islam et al. [33] constructed a 
max-voting ensemble of three variants of the DesneNet [19] 
architecture for AD classification on the OASIS dataset, out-
performing single models such as ResNet [13], Inception-v4 
[20], and ADNet [39] on the same dataset. The authors of 
[32] first sliced the 3D MRI into 123 sagittal, coronal, and 
transverse 2D images, and trained a base 2D CNN AD ver-
sus CN classifier for each of those images, resulting in 123 
base models. Using only the best 5 performing models from 
each view, three single-axis ensembles were built. Finally, a 
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three-axis ensemble was created on top of these three single-
axis ensembles to give subject-level prediction. A weighted 
average ensemble of 2D CNNs for AD detection was devel-
oped by Choi et al. [34]. On 2D slices from each of the three 
views of the brain, three deep learning models—VGG-16 
[16], GoogLeNet [17], and AlexNet [18]—were trained. A 
deep ensemble generalization loss which accounted for the 
interaction and cooperation between the deep models was 
created, and the sequential quadratic programming algo-
rithm was used to find the optimum weights of each model. 
This method helped them achieve a staggering AD versus 
CN versus MCI multi-class accuracy of 93.84%. In [45], a 
multi-channel 2D CNN is presented to extract the 3D sMRI 
for the classification AD. The CNN model is trained on the 
different planes of the view for the feature extractions and 
achieved the accuracy of 98.33%.

Inspired by the success of 3D CNNs, transfer learning, 
and ensemble learning, in our work, we propose an optimal 
weighted average ensemble of 3D CNNs that use pre-trained 
weights from 2D CNNs trained on the ImageNet dataset.

Materials and Methods

This section provides the details of our pipeline comprising 
data selection, data augmentation, the proposed CNN archi-
tectures, 3D transfer learning, the optimal weighted average 
ensemble model, and performance metrics for evaluating 
the proposed model.

Data Selection

For our work, we utilized structural MRI data from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
dataset. Specifically, T1-weighted MRI data marked as 
“Spatially Normalized, Masked, and N3 corrected T1 
images” are utilized. These images were already preproc-
essed with alignment and skull-stripping and were of size 
110 × 110 × 110 × 1. A total of 228 subjects (50 Alzhei-
mer’s disease, 62 cognitively normal, 39 late mild cognitive 
impairment, 77 early mild cognitive impairment) belonged 
to this dataset. General inclusion/exclusion criteria are as 
follows:

1.	 Cognitively normal (CN) subjects: MMSE (Mini-Mental 
State Examination) scores between 24 and 30 (inclu-
sive), a Clinical Dementia Rating (CDR) of 0, non-
depressed, non-MCI (full form), and non-demented.

2.	 Mild cognitive impairment (MCI) subjects: MMSE 
scores between 24 and 30 (inclusive), a memory com-
plaint, objective memory loss measured by education 
adjusted scores on Wechsler Memory Scale Logical 
Memory II, a CDR of 0.5, absence of significant levels 

of impairment in other cognitive domains, essentially 
preserved activities of daily living, and an absence of 
dementia. MCI is further divided into early mild cogni-
tive impairment (EMCI) and late mild cognitive impair-
ment (LMCI) based on the time at which a subject pro-
gressed to MCI.

3.	 Alzheimer’s disease (AD): MMSE scores between 20 
and 26 (inclusive), CDR of 0.5 or 1.0, and meets the 
National Institute of Neurological and Communicative 
Disorders and Stroke (NINCDS) and the Alzheimer's 
Disease and Related Disorders Association (ADRDA) 
criteria for probable AD.

We discarded 2 CN, 6 LMCI, and 1 EMCI subjects that 
did not fit into this criterion. The demographics of the sub-
jects are presented in Table 1. Moreover, one MRI scan 
was used per subject to avoid data leakage. In order to save 
memory, all images were down sampled to 55 × 55 × 55 × 1.

Data Augmentation

Due to the limited amount of data, data augmentation was 
applied on the fly to the training images using the TorchIO 
library [43] to make our models learn efficient features that 
remained unaffected by changes in geometry and intensity. 
Wanting to simulate anatomical variations and artifacts pro-
duced by the MRI scanner, the following three data augmen-
tation strategies were applied in combination at random to 
the input MRIs:

Rotation—Rotation of the input image with the rotation 
angle set to a random value in the range [− 15° to + 15°]. 
The axis of rotation would be chosen randomly from Left-
Right, Anterior–Posterior, and Superior-Inferior axes.
Shift—The image would be shifted along any random 
axis with the shift value set to a random value in the range 
[− 3, + 3].
Zoom—The whole image would be randomly zoomed in 
or out by a random value ‘z’ in the range [0.85, 1.5]. The 
input image would be zoomed out if z would be less than 
1, and zoomed in if z would be greater than 1. The same 
zoom factor would be applied on all three axes.

Table 1   Subject Demographics

AD (50) CN (60) EMCI (76) LMCI (33)

Female/male 20/30 33/27 12/21 32/44
Age 75.62 ± 8.55 73.72 ± 6.27 73.58 ± 6.01 74.3 ± 7.9
MMSE 22 ± 4 29 ± 1 26 ± 2 28 ± 2
CDR 1 0 0.5 0.5
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Proposed Model

For this study, we used five popular pre-trained image clas-
sification models namely ResNet, ResNeXt, SE-Net, SE-
ResNet, and SE-ResNeXt and inflated them to the third 
dimension in order to be able to take a whole 3D MRI scan 
as input. All models that we have chosen for this study are 
based on ResNet and its extended variations due to their sim-
ple architectures and improvised performances. We trained 
each model individually first and computed a weighted aver-
age of each model’s prediction to generate the subject-level 
prediction.

We first discuss these five CNN architectures and the 
main intuition for adopting these particular architectures. 
Then we describe the process of bootstrapping 3D param-
eters of these models from their 2D counterparts pre-trained 
on ImageNet to leverage the knowledge gained by the 2D 
models by training on ImageNet for 3D medical image anal-
ysis. Finally, the weighted average ensemble and the process 
of finding the optimal weights for each model is explained.

CNN Architectures

(a)	 ResNet: With an increase in network depth, accuracy 
gets saturated and then degrades eventually. Intuitively, 
if a shallow network is able to achieve an optimal accu-
racy, a deeper network should also work well by sim-
ply learning to compute identity functions in the newly 
added layers. However, in these newly added layers, it 
is difficult for the model to exactly learn the identity 
mapping, as it is one of the countless solutions that 
the network can arrive at, causing accuracy to decrease 
with an increase in the network’s depth. The authors of 
ResNet [8] solved this by introducing residual or skip 
connections to provide an alternative pathway for data 
and gradients to flow. The skip connections made (see 
Fig. 2) it easy for residual blocks to learn the identity 

function, allowing the authors to train deeper neural 
networks while having fast convergence.

(b)	 ResNeXt: ResNext [9] is a highly flexible and simple 
image classification model developed by Facebook AI 
Research in 2017. The authors noted it would be dif-
ficult to adapt the popular image classification architec-
ture Inception to new datasets and tasks given that the 
Inception architecture requires intricate customization 
of hyper-parameters at each stage. To overcome this, 
they took inspiration from VGG and ResNet to improve 
upon the limitations of the Inception architecture and 
introduced ResNeXt. The ResNeXt architecture makes 
use of the repeating structures as in VGG, split-merge 
strategy like in Inception, and the residual connections 
from ResNet. A ResNeXt block splits the input into a 
number of uniform branches, transforms each branch 
using multiple-sized convolutions, merges the outputs 
of each branch, and adds the input to the result using 
a skip-connection. The number of branches called car-
dinality is the next dimension on top of the depth and 
width of ResNet (see Fig. 3). The ResNeXt architec-
ture requires lesser hyper-parameters than Inception 
because each block follows the same topology.

(c)	 Squeeze and Excitation Networks: In the traditional 
convolutional operation, while constructing the output 
feature maps, the network weighs each of its trainable 
convolutional filters equally. Hu et al. [10] modified 
this by adding channel attention in order to prioritize 
certain channels over others. This was done using a 
Squeeze-Excitation block. The SE Block first produces 
a channel descriptor by aggregating feature maps across 
their spatial dimension (see Fig. 4). In other words, 
global average pooling is used to squeeze each input 
channel into a single value resulting in one neuron for 
each channel. Next, a fully connected layer is used to 
reduce the dimensions by a certain factor r, and is fol-
lowed by a ReLU layer to introduce some non-linearity. 

Fig. 2   A Residual Block. A 
layer is shown as (#in channels, 
filter size, #out channels)

Fig. 3   A ResNeXt Block with cardinality of 32
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Subsequently, another fully connected layer is used to 
project the output back to the original dimensions. 
Finally, these outputs are passed through a sigmoid 
function to obtain a weighted tensor, which tells impor-
tance of each channel. This tensor is then broadcasted 
and multiplied element-wise with each feature map of 
the CNN block. The SE Block can be integrated with 
the ResNet and ResNeXt architectures to construct 
SE-ResNet and SE-ResNeXt, respectively, as shown 
in Figs. 5 and 6.

In this work, we considered the ResNet-50, ResNeXt-50 
(32 × 4d), SE-ResNet-50, SE-ResNeXt-50 (32 × 4d), and SE-
Net-154, variants of the aforementioned five architectures, 
and modified them to their 3D versions for working with 3D 
MRI scans, by inflating the two-dimensional convolutional 
filters and pooling kernels to the third dimension. Given 
that we were interested in binary classification tasks only, 
the output of last layer was then passed through a sigmoid 
activation function. The architectures of the five models are 
shown in Table 2.

3D Transfer Learning

For all five models, we used parameters from their respective 
2D variants that were pre-trained on the ImageNet dataset 
as described by [7]. Given a 2-dimensional convolutional 
weight filter pre-trained on ImageNet, it can be converted 
into its respective 3-dimensional weight filter, by simply rep-
licating it N times along the time dimension, and rescaling 
the duplicated filters by dividing them by N, where N is the 
number of frames in the time dimension (see Fig. 7). As we 
are using pre-trained models which are mostly trained on 
colored input and using grayscale images might not work 
well without significant retraining or adaptation. For optimal 
utilization of the transfer learning, we are converting 2D 
variants of the input to its equivalent 3D counterpart for all 
the experimentation, results, and analysis.

Now, the images in the ImageNet dataset are RGB images 
with dimensions Height × Width × 3. In order to get the same 
convolutional response from the 3D inflated CNNs, the input 
to these 3D CNNs must be a sequence of RGB images, i.e., 
the input must be of size N × Height × Width × 3, where N is 
the number of frames along the time dimension. However, 
the 3D MRI scans in the ADNI dataset are all grayscale 
and have channel dimension equal to 1. Aiming to make 

Fig. 4   A Squeeze-Excitation (SE) Block

Fig. 5   An SE-ResNet Block

Fig. 6   An SE-ResNeXt Block
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use of the knowledge gained from pre-training on the RGB 
ImageNet dataset, we cut up the resized 3D 55 × 55 × 55 × 1 
MRI scans along the time dimension into 55 slices of shape 
55 × 55 × 1. Each 55 × 55 × 1 grayscale slice was converted to 
an RGB image of shape 55 × 55 × 3 by tripling the grayscale 
slices into three channels. Then, all the 55 RGB slices were 
put back together to form a sequence of 55 RGB images. We 
call this resultant of shape 55 × 55 × 55 × 3 an RGB MRI, 

and this process allowed for the 3D CNNs to apply features 
learned on the ImageNet dataset to the AD classification  
task.

Weighted Average Ensemble and Optimal Weights

For a given binary classification task, all the 5 models—
3D ResNet-50, 3D ResNeXt-50, 3D SE-ResNet-50, 3D 

Fig. 7   The procedure of con-
verting a Grayscale MRI to an 
RGB MRI for 3D transfer learn-
ing that employs the weights 
of a 2D CNN pre-trained on 
ImageNet

Fig. 8   The proposed Weighted 
Average Ensemble framework 
that is used to obtain the class 
prediction on a single subject
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SE-ResNeXt-50, and 3D SE-Net-154—were assigned a 
weight that would tell how relevant that model’s contribution 
was to the final prediction (see Fig. 8). The weights were 
non-negative values whose sum was equal to 1. The weights 
were learned and optimized by minimizing a loss function 
that represented the inaccuracy or entropy of the ensemble. 
To get predictions on a single subject, the weighted average 
of the class predictions of all 5 models was computed, and 
then rounded to the nearest integer—0 (negative class) or 1 
(positive class) to get the class prediction by the ensemble. 
Fivefold cross-validation was employed to train each model 
of the ensemble.

Without loss in generality, the 3D MRIs were split into 
K folds using K-fold cross validation and the ensemble 
consisted of M models for all 6 binary classification tasks. 
For each of the k folds, all the M models would train using 
K-1 folds and make predictions on the holdout fold. This 
resulted in M prediction vectors for each fold. The models 
were assigned weights wi(i = 1, …, M) (wi ≥ 0 and Σwi = 1) 
that would reflect their importance in the ensemble. The 
weighted average of the M prediction vectors was computed 
to get a single prediction vector on each fold. The task was to 
optimize the weights assigned to each model such that mean 
accuracy across all K folds would be maximum.

We define ŷi(x) to be the output of model i given an image 
input x. ŷi(x) describes the probability that x belongs to the 
positive class according to model i. Given a fold k, assum-
ing that there are N images (xk [1], …, xk [N]) contained in 
its validation set, each model mi(i = 1, …, M) computes a 
vector of predicted probabilities as [[ŷ1 (xk [1]), …, ŷ1 (xk 
[N])], [ ̂y2 (xk [1]), …, ŷ2 (xk [N])], …, [ŷM (xk [1]), …, ŷM 
(xk [N])]]. The weighted average of the M vectors for fold k, 
μk, is calculated as:

(1)

𝜇k =

[
M∑

i=1

wi ∗ ŷi(xk[1]),

M∑

i=1

wi ∗ ŷi(xk[2]), ...,

M∑

i=1

wi ∗ ŷi
(
xk[N]

)
]

The kth fold’s loss, lk, is then calculated as:

lk calculates the number of incorrect predictions made by the 
weighted average ensemble on fold k. Repeating this process 
for all K folds yields in a set of losses {lk: k = 1, …, K}. The 
final loss function is the mean of losses computed for all K 
folds given by:

The loss function L is a metric of inaccuracy (1—accu-
racy) of the weighted average ensemble across all k folds and 
has to be minimized. It is a function of the set of weights 
W = {wi:i = 1, …, M}. We define the following optimization 
problem:

Solve Eq. 4 using the Sequential Quadratic Program-
ming (SQP) algorithm [24] provided as “Sequential Least 
SQuares Programming” (SLSQP) by the Scientific Python 
(SciPy) library [44]. Through the SQP algorithm, the 
optimum weights for each deep model are found such that 
the inaccuracy of the weighted average ensemble across 
all k folds would be minimized (or accuracy maximized), 
thus allowing the weighted average of the predictions of 
the M models to perform better than or as good as any 
single model or an equally weighted ensemble.

(2)lk =
1

N

(
N∑

i=1

|||y[i] − round
(
�k[i]

)|||

)

(3)L(W) =
1

K

(
K∑

k=1

lk

)

(4)

min
x
L(W) subject to

M∑

i=1

wi = 1 and wi ≥ 1∀ 1 ≤ i ≤ M

Table 3   Performance of the 5 3D CNNs on AD versus CN classification task with and without transfer learning

Model Training method Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

3D ResNet-50 From scratch 90.91 ± 2.87 92.05 ± 4.88 91.67 ± 5.27 91.65 ± 2.56 90.0 ± 6.32
Transfer learning 94.55 ± 4.45 98.33 ± 3.33 91.67 ± 7.45 94.7 ± 4.34 98.0 ± 4.0

3D ResNeXt-50 From scratch 89.09 ± 5.45 92.03 ± 6.9 88.33 ± 8.5 89.73 ± 5.2 90.0 ± 8.94
Transfer learning 92.73 ± 3.64 95.0 ± 4.08 91.67 ± 5.27 93.18 ± 3.42 94.0 ± 4.9

3D SE-ResNet-50 From scratch 91.82 ± 4.45 93.66 ± 5.57 91.67 ± 7.45 92.37 ± 4.25 92.0 ± 7.48
Transfer learning 94.55 ± 5.3 96.52 ± 4.27 93.33 ± 6.24 94.86 ± 5.02 96.0 ± 4.9

3D SE-ResNeXt-50 From scratch 87.36 ± 7.96 88.28 ± 11.23 86.33 ± 4.08 88.06 ± 4.83 86.0 ± 4.0
Transfer learning 91.82 ± 4.45 94.85 ± 4.22 90.0 ± 6.24 92.24 ± 4.26 94.0 ± 4.9

3D SE-Net-154 From scratch 88.18 ± 6.17 94.55 ± 4.45 83.33 ± 10.54 88.17 ± 6.5 94.0 ± 4.9
Transfer learning 94.55 ± 3.4 94.29 ± 7.0 96.67 ± 4.08 95.18 ± 2.83 92.0 ± 9.8
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Performance Matrices

The performance of the classifier is reported using the 
following metrics represented by Eqs. 5–9:

(5)Accuracy =
TP + TN

TP + TN + FP + FN

Fig. 9   Improvement in accuracy 
on the AD versus CN Clas-
sification task through transfer 
learning

Table 4   Performance of ensemble of 5 3D CNNs on AD versus CN Classification Task

Bold values indicate the optimal results obtained by the proposed models

Optimal weight Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

0.29678286 3D ResNet-50 94.55 ± 4.45 98.33 ± 3.33 91.67 ± 7.45 94.7 ± 4.34 98.0 ± 4.0
0.09608975 3D ResNeXt-50 92.73 ± 3.64 95.0 ± 4.08 91.67 ± 5.27 93.18 ± 3.42 94.0 ± 4.9
0.267783 3D SE-ResNet-50 94.55 ± 5.3 96.52 ± 4.27 93.33 ± 6.24 94.86 ± 5.02 96.0 ± 4.9
0.02428686 3D SE-ResNeXt-50 91.82 ± 4.45 94.85 ± 4.22 90.0 ± 6.24 92.24 ± 4.26 94.0 ± 4.9
0.31505753 3D SE-Net-154 94.55 ± 3.4 94.29 ± 7.0 96.67 ± 4.08 95.18 ± 2.83 92.0 ± 9.8

Equally weighted average 96.36 ± 3.4 98.33 ± 3.33 96.67 ± 4.08 96.59 ± 3.14 98.0 ± 4.0
Optimal weighted average 97.27 ± 3.64 98.33 ± 3.33 96.67 ± 4.08 97.46 ± 3.35 98.0 ± 4.0

Table 5   Performance of ensemble of 5 3D CNNs on EMCI versus CN Classification Task

Bold values indicate the optimal results obtained by the proposed models

Optimal weight Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

0.14870427 3D ResNet-50 74.97 ± 4.44 72.44 ± 6.99 71.67 ± 6.67 71.68 ± 4.21 77.5 ± 8.2
0.07614262 3D ResNeXt-50 74.21 ± 6.78 71.99 ± 11.64 73.33 ± 3.33 71.96 ± 4.77 74.83 ± 13.75
0.24526926 3D SE-ResNet-50 74.95 ± 3.87 76.8 ± 12.41 66.67 ± 7.45 70.23 ± 2.42 81.33 ± 11.47
0.4477129 3D SE-ResNeXt-50 76.43 ± 3.96 71.02 ± 6.12 71.67 ± 9.72 75.29 ± 3.53 72.33 ± 10.73
0.08217095 3D SE-Net-154 74.23 ± 3.5 72.94 ± 8.91 71.67 ± 15.46 70.46 ± 5.66 76.08 ± 13.83

Equally weighted average 77.91 ± 7.48 77.11 ± 11.3 71.67 ± 15.46 74.83 ± 7.41 81.42 ± 10.76
Optimal weighted average 82.33 ± 5.5 81.18 ± 9.23 71.67 ± 15.46 80.24 ± 4.95 84.08 ± 10.06
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Table 6   Performance of ensemble of 5 3D CNNs on LMCI versus CN Classification Task

Bold values indicate the optimal results obtained by the proposed models

Optimal weight Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

0.05121145 3D ResNet-50 85.03 ± 7.94 87.49 ± 7.39 90.0 ± 6.24 88.58 ± 5.94 76.19 ± 15.06
0.16870546 3D ResNeXt-50 84.97 ± 1.99 88.18 ± 6.99 90.0 ± 8.16 88.45 ± 1.92 76.67 ± 14.32
0.18966876 3D SE-ResNet-50 87.13 ± 7.42 91.44 ± 4.94 88.33 ± 8.5 89.69 ± 6.04 85.24 ± 9.09
0.04099955 3D SE-ResNeXt-50 84.91 ± 5.36 86.9 ± 8.18 91.67 ± 5.27 88.82 ± 3.46 72.86 ± 18.29
0.54941478 3D SE-Net-154 88.19 ± 4.05 89.31 ± 4.68 93.33 ± 6.24 91.04 ± 3.06 79.05 ± 11.0

Equally weighted average 88.25 ± 7.1 90.56 ± 6.86 93.33 ± 6.24 90.98 ± 5.27 82.38 ± 13.93
Optimal weighted average 90.41 ± 3.81 91.13 ± 6.4 93.33 ± 6.24 92.77 ± 2.69 82.38 ± 13.93

Table 7   Performance of ensemble of 5 3D CNNs on EMCI versus AD Classification Task

Bold values indicate the optimal results obtained by the proposed models

Optimal weight Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

0.00761035 3D ResNet-50 77.05 ± 7.49 86.15 ± 2.68 73.92 ± 13.83 78.86 ± 8.33 82.0 ± 4.0
0.20785016 3D ResNeXt-50 73.88 ± 5.55 79.44 ± 13.56 85.33 ± 18.09 79.37 ± 4.46 56.0 ± 34.41
0.20546232 3D SE-ResNet-50 78.65 ± 5.56 82.15 ± 10.25 86.75 ± 14.02 82.71 ± 5.07 66.0 ± 22.45
0.33793241 3D SE-ResNeXt-50 79.42 ± 6.17 85.68 ± 7.77 80.33 ± 10.97 82.22 ± 5.69 78.0 ± 11.66
0.24114476 3D SE-Net-154 76.25 ± 3.94 83.72 ± 7.38 77.83 ± 13.78 79.41 ± 4.68 74.0 ± 18.55

Equally weighted average 81.05 ± 9.62 86.56 ± 8.09 77.83 ± 13.78 83.05 ± 10.08 78.0 ± 13.27
Optimal weighted average 84.22 ± 8.84 87.59 ± 7.96 77.83 ± 13.78 86.7 ± 7.82 80.0 ± 14.14

Table 8   Performance of ensemble of 5 3D CNNs on LMCI versus AD classification task

Bold values indicate the optimal results obtained by the proposed models

Optimal weight Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

0.42254655 3D ResNet-50 80.74 ± 4.32 83.43 ± 9.46 66.19 ± 12.27 72.64 ± 6.98 90.0 ± 6.32
0.10075757 3D ResNeXt-50 79.49 ± 3.12 81.67 ± 15.28 69.05 ± 14.6 72.21 ± 5.1 86.0 ± 12.0
0.05018952 3D SE-ResNet-50 77.13 ± 4.29 82.5 ± 15.0 60.95 ± 19.44 66.53 ± 8.85 88.0 ± 11.66
0.02901572 3D SE-ResNeXt-50 80.81 ± 4.12 83.62 ± 9.28 66.67 ± 11.76 73.0 ± 6.4 90.0 ± 6.32
0.39749065 3D SE-Net-154 81.91 ± 8.75 88.1 ± 10.86 65.71 ± 25.22 70.71 ± 22.13 92.0 ± 7.48

Equally weighted average 79.41 ± 9.45 82.67 ± 18.31 65.71 ± 25.22 69.38 ± 15.72 92.0 ± 7.48
Optimal weighted average 84.26 ± 9.33 86.67 ± 12.47 65.71 ± 25.22 76.3 ± 17.23 94.0 ± 4.9

Table 9   Performance of ensemble of 5 3D CNNs on EMCI versus LMCI Classification Task

Bold values indicate the optimal results obtained by the proposed models

Optimal weight Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

0.27390805 3D ResNet-50 75.28 ± 4.4 74.51 ± 4.07 98.67 ± 2.67 84.8 ± 2.48 21.43 ± 15.06
0.14375216 3D ResNeXt-50 75.24 ± 2.09 74.37 ± 2.55 98.67 ± 2.67 84.74 ± 1.26 20.95 ± 11.0
0.02845428 3D SE-ResNet-50 75.28 ± 3.34 74.36 ± 2.58 98.67 ± 2.67 84.77 ± 2.06 20.95 ± 12.27
0.14598411 3D SE-ResNeXt-50 75.24 ± 2.09 75.08 ± 3.37 97.33 ± 5.33 84.57 ± 0.98 23.33 ± 19.19
0.4079014 3D SE-Net-154 76.19 ± 4.25 76.47 ± 4.6 96.08 ± 5.29 84.92 ± 2.37 30.48 ± 18.22

Equally weighted average 72.51 ± 2.55 71.75 ± 2.21 96.08 ± 5.29 83.53 ± 1.5 9.05 ± 7.44
Optimal weighted average 77.1 ± 4.83 75.43 ± 4.15 96.08 ± 5.29 85.93 ± 2.74 24.76 ± 12.56
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(6)Precision =
TP

TP + FP

(7)Recall =
TP

TP + FN

where TP, TN, FP, and FN denote the number of True Posi-
tive, True Negative, False Positive, and False Negative clas-
sification results, respectively.

(8)F1-score = 2 ×
Precision × Recall

Precision + Recall

(9)Specificity =
TN

TN + FP

Fig. 10   Optimal weight assigned to each model for the six classification tasks

Fig. 11   Training and Validation accuracy for the best performing 
model on the initial fold for the following classification tasks—a AD 
versus CN (3D ResNet-50), b EMCI versus CN (3D SE-ResNet-50), 

c LMCI versus CN (3D SE-ResNeXt-50), d EMCI versus AD (3D 
SE-ResNeXt-50), e LMCI versus AD (3D SE-Net-154), and f EMCI 
versus LMCI (3D ResNeXt-50)
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Results and Discussion

As aforementioned, 50 subjects diagnosed with AD, 76 sub-
jects with EMCI, 33 subjects with LMCI, and 60 CN sub-
jects are considered. With these four classes, there are six 
binary classification tasks. Given that this is a small dataset, 
fivefold cross validation was performed to better evaluate 

model performance, and data augmentation was applied on 
the fly for better generalization as described in section III B.

The experiments were performed using Keras v2.4.0 
framework with a TensorFlow v2.4.2 backend using a cloud-
based NVIDIA TESLA P100 GPU (16 GB). The same train-
ing parameters are utilized for all models of the ensemble. 
The Adam optimization model was applied with the follow-
ing parameters—learning rate of 0.001, 0.9 and 0.999 as 

Table 10   Comparison with state-of-the-art for AD versus CN classification

Bold values indicate the optimal results obtained by the proposed models

Ref. Subjects Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

[26] 50 AD + 62 CN VoxResNet 80.00 – – –
[32] 137 AD + 162 CN 2D CNN + ensemble learning 84.00 – – – –
[27] 592 AD + 960 CN Spectral graph CNN 85.8 82.31 83.5 82.9 87.5
[30] 198 AD + 230 CN Convolutional Autoencoder based on 

Google InceptionV2
86.60 – 88.55 – 84.54

[25] 336 AD + 330 CN ROI based 3D CNN with autoen-
coder pre-training

88.00 – – – –

[37] 358 AD + 429 CN Landmark based multi-instance 3D 
CNN

91.09 91.49 88.05 89.74 93.50

[35] 49 CN + 51 AD 2D CNN + attention mechanism 92 97 85 91 –
[38] 900 AD + 900 CN LSTM 92.20 – – – –
[36] 198 AD + 229 CN 3D CNN + 3D CLSTM 94.19 – 93.75 – 94.57
[29] 132 AD + 132 CN Pre-trained 3D ResNet-18 96.88 – 100 – 93.75
Our model 50 AD + 60 CN Optimal weighted average ensemble 

of 5 3D CNNs
97.27 98.33 96.67 97.46 98.0

Table 11   Comparison with state-of-the-art for EMCI versus CN classification

Bold values indicate the optimal results obtained by the proposed models

Ref. Subjects Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

[27] 899 EMCI + 960 CN Spectral graph CNN 51.8 50.15 55.3 52.6 48.6
[26] 77 LMCI + 61 CN VoxResNet 56 – – – –
Our model 76 EMCI + 60 CN Optimal weighted average 

ensemble of 5 3D CNNs
82.33 81.18 71.67 80.24 84.08

Table 12   Comparison with state-of-the-art for LMCI versus CN classification

Bold values indicate the optimal results obtained by the proposed models

Ref. Subjects Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

[27] 638 LMCI + 960 CN Spectral graph CNN 69.3 62.85 65.6 64.2 72.0
[26] 43 LMCI + 61 CN VoxResNet 61 – – – –
Our model 33 LMCI + 60 CN Optimal weighted average 

ensemble of 5 3D CNNs
90.41 91.13 93.33 92.77 82.38
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the exponential decay rates for the first and second moment 
estimates, and a batch size of 8. The learning rate was sched-
uled using Exponential Decay with the decay steps set to 
100,000, decay rate set to 0.96, and staircase set to ‘True’. 
We trained for 150 epochs.

Effects of 3D Transfer Learning

For investigating the effects of 3D transfer learning on AD 
classification, we fixed the classification task to AD versus 
CN and trained all 5 models of the ensemble from scratch 
as well as with ImageNet pre-training as described in III C 
2). The results are presented in Table 3 and Fig. 9. We have 
not presented the results for other classification tasks as the 
trends are similar for other classification tasks also.

From these experiments it is observed that the model 
performance could most definitely be improved by using 
transfer learning. All 5 3D CNN models had successfully 
exploited the information learned by their 2D equivalents on 
the ImageNet dataset and used that information to improve 
their classification ability on the AD versus CN task. On 
average, transfer learning had increased the model accuracy 
by 3.43%. Moving forward, we applied transfer learning for 
all experiments.

Effects of Weighted Average Ensemble

After training the 5 pre-trained 3D CNN models on each of 
the six binary classification tasks one by one, we found the 
optimum weights to be assigned to each model for each task 
by minimizing Eq. (4). Then an equally weighted average 
and the optimal weighted average of the models’ predic-
tions were computed to test the effectiveness of the optimal 
fusion. The performance of the individual models, equally 
weighted average, and the optimal weighted average along 
with the optimal weight assigned to each model are shown 
in Table 4, 5, 6, 7, 8 and 9 and Fig. 10.

Across all binary classification problems, the optimal 
weighted average outperforms the equally weighted average 
as well as the individual models showcasing the effective-
ness of minimizing loss function defined in (3) through the 
SQP algorithm. It shows that by evaluating all the models 
individually first, and placing our trust in those models we 
know perform better than others, we can achieve substan-
tially better classification performance. This is evident from 
Tables 4, 5, 6, 7, 8, and 9 where it is observed that gener-
ally higher weights are given to better performing models. 
Averaging across all the tasks, the optimal weighted aver-
age exceeds the single best model by 3.15% and the equally 

Table 13   Comparison with state-of-the-art for EMCI versus AD classification

Bold values indicate the optimal results obtained by the proposed models

Ref. Subjects Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

[27] 899 EMCI + 592 AD Spectral graph CNN 79.2 78.88 70.4 74.4 85.8
[26] 77 EMCI + 50 AD VoxResNet 63 – – – –
Our model 76 EMCI + 50 AD Optimal weighted average 

ensemble of 5 3D CNNs
84.22 87.59 77.83 86.7 80.0

Table 14   Comparison with state-of-the-art for LMCI versus AD classification

Bold values indicate the optimal results obtained by the proposed models

Ref. Subjects Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

[27] 638 LMCI + 592 AD Spectral graph CNN 65.2 65.67 62.6 64.1 68.0
[26] 43 LMCI + 50 AD VoxResNet 59 – – – –
Our model 33 LMCI + 50 AD Optimal weighted average 

ensemble of 5 3D CNNs
84.26 86.67 65.71 76.3 94.0

Table 15   Comparison with state-of-the-art for EMCI versus LMCI classification

Bold values indicate the optimal results obtained by the proposed models

Ref. Subjects Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) Specificity (%)

[27] 899 EMCI + 638 LMCI Spectral graph CNN 60.9 54.53 52.5 53.5 67.8
[26] 77 LMCI + 43 EMCI VoxResNet 52 – – – –
Our model 76 EMCI + 33 LMCI Optimal weighted average 

ensemble of 5 3D CNNs
77.1 75.43 96.08 85.93 24.76
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weighted average by 3.35% in terms of accuracy. Figure 11, 
shows the accuracy curves for the best performing 3D CNN 
model on the first fold for all six binary classification tasks. 
After data augmentation and applying multifold cross valida-
tion, we could also observe the sign of overfitting. For most 
of the six binary classification tasks, we observe a steady 
peak in the model performance on the validation set. The 
probable reason behind the same is less amount of available 
training data and inherent variance associated among the 
dataset instances. We could also notice sharp performance 
drop for some of the instances due to again the same reason 
that the augmentation could not sketch the generalization 
aspects of the dataset for the respective samples.

In several cases, the precision, recall, and specificity 
metrics of a few individual models outperform those of 
the optimal weighted ensemble as weights of the ensemble 
members have been optimized to maximize accuracy and 
not any other metric. Another interesting remark is that for 
the EMCI versus LMCI classification task, recall is very 
high and specificity is very low for all the models. This 
means the models are able to correctly classify most of 
the subjects suffering from LMCI (positive class), but for 
all the subjects suffering from EMCI (negative class), the 
number of correct predictions is low, conveying that all 
the models are classifying most of the subjects as LMCI.

We conclude that while the proposed method is suc-
cessful in discriminating between normal cohorts and 
MCI subjects even though the brain morphology between 
subjects of these classes is quite similar, it is not quite 
able to reach the same level of success in distinguishing 
between the early and late stages of MCI, suggesting that 
the differences in brain structures between subjects suffer-
ing from EMCI and LMCI are even subtler than the differ-
ences between the brain structures of cognitively normal 
subjects and MCI subjects.

Comparison with State‑of‑the‑Art

The results of our model are compared with state-of-the-art 
deep learning models that trained and reported performance 
using MRI data from the ADNI dataset [25–27, 29, 30, 32, 
35–38]. From Table 10, 11, 12, 13, 14, and 15, it can be 
seen that our model outperforms aforementioned methods 
in terms of accuracy despite employing a very small sub-
set of ADNI. The superior performance of our models can 
especially be seen in the binary classification tasks involving 
patients suffering from early and late MCI. For example in 
the EMCI versus CN classification task, our model improves 
upon [27] by a tremendous 30.53% despite the dataset being 
92.68% smaller than [27]. The only significant drawback to 
our method is its low specificity in the EMCI versus LMCI 
task. But it should be taken into account that in practice, 

there is not much significant value in distinguishing EMCI 
and LMCI patients. It is, however, extremely important and 
useful to differentiate normal patients from those suffering 
from MCI and AD, which our method has proven to excel 
as compared to state-of-the-arts.

Conclusions

In this paper, we proposed a weighted average ensemble of 
3D CNNs for the classification of structural MRI images. 
The ensemble consisted of the 3D variants of the ResNet-50, 
ResNeXt-50, SE-ResNet-50, SE-ResNeXt-50, and SE-
Net-154, each initialized with the convolutional filters of 
their 2D equivalents pre-trained on ImageNet, and combined 
their predictions using an optimal weighted average. We 
found the optimal weights of the members of the ensemble 
by devising a loss function that computes the inaccuracy of 
the ensemble, and minimizing it using sequential quadratic 
programming. The proposed method achieved outperformed 
state-of-the-art on six AD binary classification tasks, dis-
playing the effectiveness of transfer learning and an optimal 
weighted ensemble.

Despite the promising performance, the proposed model 
is not without limitations. Taking the whole brain as an 
input results in high feature dimensionality and makes 
training computationally expensive. In future, we would 
like to experiment with region-of-interest and patch-based 
approaches toward accomplishing higher accuracy. We also 
plan to test the robustness of our model with subjects clas-
sified as stable and progressive MCI, as it is important to 
determine whether someone with MCI may develop AD.
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